INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 353-367

The asymmetry of stress in granular media
J.P. Bardet ®*, I. Vardoulakis °

& Department of Civil Engineering, University of Southern California, 3620 S. Vermont Avenue, Kaprielian 210, Los Angeles,
CA 90089-2531, USA
® Department of Engineering Sciences, National Technical University of Athens, GR-157-00 Athens, Greece

Received 3 August 1999

Abstract

Here, we show that the average stress in granular media, which is defined from virtual work, may be asymmetric in
the absence of contact moments. We specify the circumstances and amplitude of stress asymmetry, and calculate the
corresponding couple stress and first stress moment. We also show that the average stress is always symmetric, when it
is alternately defined by using statics and no contact moment. The stress asymmetry, which results from external
moments, has an amplitude that decreases with the volume size. The present analysis applies to two- and three-
dimensional particles of arbitrary shapes. The asymmetric stress, couple stress and first stress moment are analytically
calculated in a particular example with cylindrical and spherical particles. © 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The definition of stress in granular media is a controversial topic in mechanics. Some researchers
(Bogdanova-Bontcheva and Lippmann, 1975; Chang and Ma, 1991; Kanatani, 1979; Miihlhaus and
Vardoulakis, 1987) claim that stress tensor is not symmetric in granular media, and that couple stresses are
important to understand material instability such as shear banding. Others (Christoffersen et al., 1981;
Cundall and Strack, 1978-1979) affirm that the stress asymmetry is absent or negligible for all practical
purposes, and unnecessarily complicates the description of the mechanical behavior of granular media.

The controversy about the asymmetry of stress and the existence of couple stress is not specific to
granular media. Couple stresses were proposed in metals and fracture mechanics to regularize the stress
intensity at crack tips (Sternberg, 1968), but there is not yet a convincing experimental evidence for couple
stress (Diepolder et al., 1991).

The objective of this article is to re-examine the definition of stress in granular materials, and to establish
the conditions under which there may be couple stresses and asymmetric stress. Following the introduction,
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Sections 2 and 3 review the basic equations of granular and equivalent continuous media. Section 3 re-
examines the definition of stress from virtual work and statics. Finally, Section 6 gives an example illus-
trating the stress asymmetry in granular media.

2. Granular medium
2.1. Definition

As shown in Fig. 1, volume V is filled with N particles, some of which are subjected to external forces or
moments applied from the exterior of volume V. The particles are grouped in set B = {1,...,N}. The forces
and moment acting on the particles of B are concentrated at M points of set C = {1,...,M}. As shown in
Fig. 1, subset 7 represents the contact points between two particles of B, whereas the E denotes the points,
where external actions are applied:

I={1,....M}, E={M;,,....M} and C=IUE={l,... M}. (1)

Sets I,, E,, and C, denote the contact points on particle ¢ corresponding to internal actions, external
actions, and all actions, respectively. Sets C,, I,, E,, I, E, and C are related as follows:

c=Jc, C.=1LUE, I=|Jl, and E=|JE. (2)
acB acB acB
The intersections of I, and E, for two different particles are either empty or reduced to a single point c:
EaﬂEb:Q and Iaﬂlb:{c} V(,Z?ébGB (3)

The particle assembly is in equilibrium when each particle is in equilibrium. The equilibrium of internal
and external forces acting on particle a is

S fre=0, i=1,23 4)
ceCy,

where £ is the force at contact c. The equilibrium of moments about the center of particle a is
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Fig. 1. Representation of a granular medium and its equivalent continuum.
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3 (m + e (xS — x) k) 0, i=1,2 3, (5)
ceCy

where m{ represents the internal or external moments at contact point ¢, e;; is the permutation symbol
used for vector cross-product, and x and x{ are the coordinates of particle center ¢ and contact point ¢,
respectively.

2.2. Virtual work in granular media

As shown in Fig. 1, the kinematics of granular media is represented by the displacement Su! of the
particle centers, and the particle rotation 667. After multiplying Eqs. (4) and (5) by any virtual displacement
du¢ and rotation 807, and summing for all the particles of volume ¥, one obtains the following relation:

SN (s ut + (mie el — w1 f) 86¢) = 0. ©)

a€B ceC,

After transforming the double sum for C, and B of Eq. (6) into two separate sums for / and E, and noting

that the contact forces and the moments are opposite at internal contact (i.e., f¢ = f* = —f/ and
m¢ = m* = —m"), one obtains the principle of virtual work:
WP + 5P =0, (7)

where the work 3/P done by external forces and moments and the work 3%” done by internal forces and
moments are

S = (f Aduf +m{ ASOS) and 8 = = (f;8uf + m(36;). ®)

cel eck

As shown in Fig. 2, ASu$ and Ad0; are the relative displacement and rotation of the two particles a and b
at their contact point ¢, respectively:
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Fig. 2. Contact between two particles in a granular medium.
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Abu; = Sul — Suf + e (80) (x5 — 1) — 807(x; —x7)) and  ASO; = 80 — 80, (9)

where du¢ and 36 are the displacement and rotation of the points e of application of external forces and
moments. The variational displacements and rotations du¢ and 36/ can be selected arbitrarily. In particular,
they can be chosen as follows:

8”? =a;+ bijx_l; + cijkxfxz and 60a =o; + ﬁ = 1, 2, 3, (10)

1]]

where a;, b;;, ¢, %, and f;; are arbitrary coefficients. By using Eq. (10), Adu¢, A30; and du¢ become

Aduf = b,:,-(xj? - x;’) + c,:,-k(xfxi’ — x;.’xZ) — e (xz — x;‘) + Bk (x? (x;( — xf{’) —x{ (xz — xZ)), (11)
ASH? = ﬂ:/(x}; - xj)a (12)
Suf = duf + ei,-kBQ’; (x,‘i — xze) = a; + byx{* + cypxx + ei,kocf(x,"; ) + e X’ (x ( — X ) (13)

where x* corresponds to the center of particle a, where contact e takes place. By using Egs. (11)-(13), 8;”
and 3WP become

P = bz:fof (xf ) + C’f"zf : (x X=X x") —% Ze”"f —)

cel cel
B (e (5 @—ﬁ@i—ﬂ»+mxﬁ—ﬁ0, (14)
cel
S = —aiz‘ff - b,-‘,-foxj" - Ciijf,e XX — “JZ(ei/kﬁe (xp —x¢) + m,e)
eckE eckE eck eckE
_ le(e’/kf xXp —xp¢) + ) . (15)
eck

As Eqgs. (7), (14) and (15) hold for arbitrary values of a;, b;;, c;i, o and B;;, the following relations are
obtained:

M fe=0, i=1,23, (16)
eck

Z x? —x Zx“e ¢ Lj=1,2 3 (17)
cel eck

D e —xff ==Y M, i=1,2, 3, (18)
cel eck

Z(e,“f,( (x6 —xb) — X (xg —xZ)) + m{( x — X ) ZM“‘ e Qj=1,2, 3, (19)
cel eckE

D S X)) = frexens, k=1, 2, 3, (20)
cel eck

where M is the external moment acting on particle a about the center of particle a:

M} = eyl = xXi)ff + . @)
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Eq. (16) translates the equilibrium of external forces applied to the whole assembly of particles. By using
Eqgs. (17) and (18), one can derive the equilibrium of external moments about the coordinate origin for the
assembly of particles, i.e.,

Z(e,—m,,x,"n v+ m,‘) =0. (22)

eck

Therefore, Eq. (18) becomes
Ze’:ik(xj? _xj)]pkc = _ZM'W = Zeim”x:lne ne7 i= 1’ 2) 3. (23)

cel eck eck

For a volume V' to be in equilibrium, the sum of external moments about a common point must vanish (i.e.,
Eq. (22)). However, it is emphasized that the sum of external moments about different particle centers (i.e.,
> e M) is not necessarily equal to zero. M results from not only contact moments m¢, but also contact
forces f¢. It may be different from zero even where there is no contact moment.

3. Continuum for granular media

In the continuum equivalent for granular media, the traction vector 7; and moment vector m; acting on
the unit surface of unit normal vector #; is related to the Cauchy stress tensor o;; and the couple stress tensor
Hij through

T;‘ = 0;n; and m; = ,ujlnj, i= 17 2, 3. (24)

In the absence of external body force and moment per unit volume, the equations for equilibrium of
internal stress and couple stress are

Gji,j = 07 = 17 27 37 (25)

Wjij T €O = 0, i=1, 2, 3. (26)

The kinematics of the equivalent continuum is defined by the fields of displacement vector du; and ro-
tation 86;, which describe the motion of particle centers, i.e.,

Su;(xj) = duf and 80;(x7) = 0] Va € B. (27)
By multiplying Eqs. (25) and (26) by any variational fields 6u; and 60;, and integrating over volume V,
one obtains the following relation:

/V (O'ji_j 8141‘ + (:uji,j + eiklo-kl) 69,) =0. (28)

By invoking the Gauss theorem, the principle of virtual work is obtained:
S + 8 = 0, (29)

where the virtual work 6 Wg of external forces and moments and the virtual work 8 W7 of internal stresses
are

SVVI = / (O'_/','(SMI‘T/‘ + €ijk Sgk) + ,ujl- 601‘?/) dV and SVVE = —/ (T; 611,‘ + m; 80,) ds. (30)
14 N

By choosing du; and 660; as specified in Eq. (10), Eq. (30) becomes
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SWE: —a,/ZdS—blj/T;xde_cljk/T;X/Xde—OC,/mldS—BU ml'deS, (31)
N N N N N

8VV] = b,*j O'ﬁdV + Cijk /(()'ﬁxk + (Tkin)dV — ocie,-jk/ O'jde + ﬁ,-j (,Uji + eiklxjalk) dr. (32)
Vv Vv Vv

Vv

As Egs. (29), (31) and (32) hold for any values of a;, b;, ci, o, and f;;, the following relations are
obtained:

/TidSZO, i=1, 2, 3, (33)

s

/O-ijdV:/xiTde7 L,j= la 27 3’ (34)

Vv S

ez:fk/(fjde: —/m,-dS7 i=1,2, 3 (33)
1% N

/(,“i/+€jk1xz‘71k)dV:/ximjds’ hj=1,2,3, G6)

p s

/(O'jixk“l‘o'kixj)dV:/Exjxde7 Lj=1,23. G7

v s

Eq. (33) implies the equilibrium of external forces. Eq. (34) represents the average stress ¢;; in volume
Vv

1 1

Eq. (35) is useful to examine the symmetry of 4,
1
ewoy =5 [ mds, i=1,2.3 (39)
Vs

where ey;0;;, = 0 when the stress tensor is symmetric (i.e., 6; = 6;;). However, fS m;dS is not necessarily
equal to zero when there are moments at the external boundary. As previously mentioned, these external
moments in granular media may result from contact forces without contact moments. Finally, Eq. (36)
becomes

1 ~ _
% /V (:uij + ejklxio-/k) dV = [; + e Zin, (40)

where Z‘?ijk is the average moment of stress:

1

Zijk = — /x,-O'jde. (41)
V-Jy

In summary, the internal work becomes

o = V(bijaji + cip(Zii + Z ) — epd i + Bij (I + eiklijlk))- (42)
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4. Definition of average stresses in granular media
The average stresses in the equivalent continuum are defined by postulating that the granular and
continuous media produce identical internal and external works:

3WP =38w; and WY = dWk. (43)

4.1. Average stress

As Eq. (43) applies to arbitrary values of b;;, the average stress is

Gij = —Z x; —x7) :/Zx?eff. (44)

cel eck

Eq. (44) is identical to those derived by Weber (1966), Goddard (1977), Christoffersen et al. (1981), and
Rothenberg and Selvadurai (1981). In the case of spherical and cylindrical particles ¢ and b, which are in
contact at point ¢ with unit normal vector n¢ (i.e., x? — x* = (R, + Ry)n¢), due to the opposite sign of contact

forces and contact normals (i.e., fF” = —f and n = —n¢’), Eq. (44) becomes
1
5. o— R R c __ R ca yca 4
gij = VCZE[( + bnf GGZB; n; f ( 5)

4.2. Symmetry of average stress

As Eq. (43) applies to arbitrary values of «;, one obtains

1 .
€kl = ;Zeijk(x_f = *—Z Zeijkx_?ef]:v i=1,2 3. (46)

cel ecE eEE

Eq. (46), which can also be obtained directly from Eq. (44), is useful to determine the amplitude of stress
asymmetry. This amplitude can also be characterized by 6;; — 6;; as follows:

= 05 = (0] 1Y) = e ) M 7
eck eGE
Eq. (47) implies that the average stress may be asymmetric, even when there is no moment at contacts (i.e.,
m{ = 0). The asymmetry results from the sum of the external moments that are created by external forces f
about the particle centers.

The amplitude of stress asymmetry increases with the area S on which the external moments are applied,
but decreases with volume V. If the external moments are assumed to have bounded values, the amplitude
of stress asymmetry decreases with ¥/S. When ¥V — oo, the effects of external moments vanish, and the
average stress is symmetric. This applies with or without contact moments.

In the case of spherical and cylindrical particles, Eq. (47) becomes

Gy — G = ZZR ( nee e — aCfaC) _ VZ(R +Rh)( e foe n?z?f;ac). (48)

aEB cely cel

Eq. (48) shows that ¢;; is not necessarily symmetric when the particles are spheres or cylinders of identical
radius. This result, which is in disagreement with Caillerie (1991) and Chang and Liao (1990), will later be
verified in a particular example.
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4.3. Average micropolar stress and first moment of stress

As Eq. (43) applies to arbitrary values of f;; and c;, the following relations are obtained:

u,,+e,kzz,zk=—z(ezkm( (5 =) = X)) ) + i) — )

:_ZMac ae i,j:17 2’ 37 (49)
eckE
it == Zf" xxk—xxk Zf“ex“eng, i,j,k=12,3. (50)
CEI eeE

Therefore, the external moments M, which result from external contact force f¢ and/or contact mo-
ment m¢, generate not only asymmetric stress, but also couple stress and first stress moment. This result is in
agreement with Eq. (26), which states that couple stresses are required to balance asymmetric stresses.
However, the present approach provides only the sums fi; + e, 2 and X;; 4+ X, and unfortunately not
each term ji; and 2y

5. Alternate definition of average stress

The average stress can also be defined based on statics, instead of virtual work (Cundall and Strack,
1978-1979). The average stress within volume V' is defined as the weighted average of the stress o7, for each
particle a of B:

T (51)
acB

where V, is the volume of particle a, and

7= / oy dV. (52)
By using Eq. (34), and replacing the traction vector 7; with discrete contact force ff, a7, becomes
a :%/Saxﬂ}dS:%;xffﬂ (53)
Because the contact forces are opposite at internal contacts (i. e, fi'=— ff”), the average stress g}, is
Z > xff = Zx T+ 1) + Z o= erfe (54)
aGB ceCy CGI eGE eeE

Note that x¢ in Eq. (54) refers to contact point e, whereas x¢ in Eq. (44) refers to the center of the particle a,
where contact e takes place. 6;; and g;; are related through

G =0+ — Z X —x)f (55)
eeE

The symmetry of &7, results from the equilibrium of moments about the coordinate origins for particle a,
1e.,
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e = %Zei,kxjf,f =0, i=1,2, 3. (56)
aceC,

The stress 67, is therefore symmetric, because it is the weighted sum of symmetric 67;. The symmetry of 4;;
can also be shown by using Eq. (54) and invoking the equilibrium of external moments about the coor-
dinate origin (i.e., Eq. (22)).

The symmetry of ¢}, has significant implications in computational granular mechanics, especially for the
computer simulations using dynamic relaxation to solve the equilibrium equations of statics (Cundall and
Strack, 1978-1979; Bardet and Proubet, 1991). When there is no moment at contacts, ; should be sym-
metric, and any computed asymmetry of ¢;; should be interpreted as inaccurate calculation and/or lack of
static equilibrium.

In the case of spherical and cylindrical particles of radius R,, x{ = x{ + R.n;, the average stress G;; be-
comes

1 1 1 a e 1 e
%= D S RS = 5SS gy = 5 S RS 7

acB "% ceC, acB "4 ccC, acB  ceC,

Eq. (57) is the same as that obtained by Cundall and Strack (1979).

6. Examples

We will illustrate the circumstances of stress asymmetry in the case of double and multiple layer in-
terfaces filled with cylindrical or spherical particles.

6.1. Double layer interface

The stresses 6;; and o;; can be calculated analytically for the particular example of Fig. 3, which rep-
resents an interface made of p columns each having two particles. The columns have the same height, but
are made of particles of various diameters. The particle assembly is subjected to the normal force N, and
shear force S, which are assumed to be distributed evenly onto each particle column; the normal and shear
forces acting at all contacts are N = N,/p and S = S, /p, respectively. The contact direction between two
particles is identical for all particles in contact. It is characterized by the unit vector n of component

y |
X

-N

W, S,
-S % ,

B3R A/
_‘, /) 5, f

(Rl +R2)(] +n2)
N

& Yl |
AV A
L

Fig. 3. Double-layer interface model for the calculation of average stress.
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ny = sinf and n, = cosf. The equilibrium of forces and moments for all particles and the top plate are
satisfied when

S =Nn; /(1 4+ny) =N tan(60/2). (58)

All the contact forces have the same inclination 0/2 relative to the contact direction n. The contacts do not
slip and the interface remains stable as long as 0 remains smaller than 2¢, where ¢ is the friction angle
between two particles. For the calculation of &y, it is convenient to select the coordinate axis at the center of
particle 2. In this coordinate system, the center coordinates of particle 1 are

x{e =ml and xée =L, (59)

where L = R; + R,. By using Eqgs. (44) and (59), the stresses ¢;; are

1
g1 = 7111S/A, Gy = 7(4_’1&5'/147 Gy = 7(1 + }’IQ)S/A7 and Gy = 7}’12S/A, (60)
1
where 4 = V' /L, and V is the average volume of particle columns. For interfaces filled with cylindrical or
spherical particles, V' can be evaluated as follows:

V= (1+m)LWiW, (61)

where W is the average width of particle columns in the x; direction. For cylindrical particles, W, is the
particle length. For spherical particles, ¥, is the average width of particle columns in the x, direction. Both
W, and W, depend on the density of particles in the interface.

The external moments M/ acting on particles 1 and 2 are

M; =R;S and M; =R,S. (62)
By using Eq. (47) or Eq. (60), the amplitude of stress asymmetry is

L M} + M2

g1 — 071 :—%:—S/A (63)

The stress asymmetry vanishes when S = 0, i.e., when the particle columns are vertical. As previously stated
in Eq. (48), G;; is not necessarily symmetric for particles of identical radius (e.g., R; = R»). The couple stress
and first stress moment is

ﬂ13+2121 72112 :Rll’llS/A and ﬂ23+2221 72212 :R1n2S/A (64)

For the calculation of a5 it is convenient to select the coordinate axis at the lowest external contact. The
coordinates of the highest contact are therefore

x{=mL and x5=(1+m)L, (65)
and the stress a;; is
| 2
Fi=mS/d, o= and o= = (14 m)S/A. (66)
1

As expected, g;; is symmetric. 6;; and 6;; are related through

(1+m)

nj

S/A, 5'72 = 621, and 6;1 = 0y — S/A (67)

e = e =
011 =011, Oy =02 —

Fig. 4 compares the normalized variation of ¢;; and ;; when the angle 6 = tan~!(n; /n,) varies from 0° to
90°. The stress asymmetry (i.e., 1o — G) remains constant and independent from 6.
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Fig. 4. Variation of normalized stresses of 6;;4/S and 6;,4/S with angle 0.

6.2. Multi-layer interface

As shown in Fig. 5, the multi-layer interface model is made of p columns of particles, each column i
having ¢; particles (¢; must be an even number). This multi-layer model is a generalization of the two-layer
model, which corresponds to ¢; = 2 fori = 1, ..., p. The particle columns have the same height and contact
direction n, but may have different numbers ¢; of particles. All the particles and the top platen are in static
equilibrium, when Eq. (58) is satisfied; the contact forces are identical to those of the two-layer model. The

(R1+..‘+R2q)(1-n2)

H=

—S 5
g

N N

Fig. 5. Multi-layer interface model for the calculation of average stress.
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average stresses in the interface can be determined by averaging the average stresses in each column.
Hereafter, we will calculate only the average stresses in a column.
After selecting the coordinate axis at the center of particle ¢;, the center coordinates of particle 1 are

x; =mL and Xy = (1 +l/l2)L — (R1 +qu), (68)

where L = }7% | R;. The average stresses 6, in column i are

1 2 R +R, 1
Giy = —mS/A, p— — LM gy (R R L g (1t m)s/4, and
np V np
Ry +R,
gy = —(1 +n2)S/A+%S, (69)

where A and V are defined as for the double layer interface. The values of G, and &y, are identical to those
in Eq. (60), whereas the corresponding values of 4,; and &, are different. The differences, however, vanish
when V' — oco. The stresses ¢;; in the multi-layer are identical to those of the double layer interface (i.e., Eq.
(66)). As predicted by Eq. (69), d;; converges toward ¢;; when volume V" becomes large (i.e., ¢ — c0). The
external moments M7 acting on particle 1 and ¢; are

M; =R;S and M{ =R,S. (70)
These external moments are responsible for the stress asymmetry as follows:
G612 —Gn =—S(Ri +R,)/V. (71)

The amplitude of stress asymmetry decreases with the number of particles in the columns, and increases
with the size of particles at the top and bottom of columns. The stress becomes symmetric when the column
height becomes infinite (i.e., ¢ — 00). The couple stress and first stress moment are

iz + 2121 — 2112 = Rimi S /A4, (72)

,HB + 2221 - 2212 = Rl(l + I’lz)S/A - Rl(Rl + Rq‘)S/V
In contrast to the asymmetric stress components, fi;; + ex2 i does not decrease when volume ¥ becomes
large (i.e., ¢ — 00).

7. Discussion

The asymmetry of stress depends on the way stresses are defined. The stresses defined by statics are
symmetric when there is no contact moment. However, the stresses defined by virtual work may become
asymmetric when there is no contact moment. Our analysis differs from the previous ones (Christoffersen
et al., 1981; Chang and Liao, 1990), because we considered external moments, and established the circum-
stances and amplitude of stress asymmetry. In agreement with Caillerie (1991), we found that the asym-
metry originates from external moments, and that the amplitude of stress asymmetry decreases with the size
of the granular volume. The stress asymmetry is, therefore, more detectable in elongated samples subjected
to external moments on their boundary. Bulky samples subjected to small external moments are likely to
display negligible stress asymmetry. The stress asymmetry can rightfully be neglected in large masses of
granular media far away from the boundaries with external moments. However, it may become important
in interfaces with significant external moments. There is a need for verifying these findings through com-
puter simulations and laboratory experiments.
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7.1. Remark on volume averaging

The areas for calculating average stresses can be selected in various ways. In two dimensions, these areas
are usually chosen to be circular. In this case, the mean normal traction (¢,) becomes equal to the trace of
the stress tensor o;; (Vardoulakis and Sulem, 1995), i.e.,

1 1
(ta) = S //fﬂ’lids -3 //O-i/ninjds = Obkks )

where S is the circle perimeter, and #; the unit normal to S. As pointed out by Novozhilov (1961), the value
of (¢,) strongly depends on the shape of the averaging area. For example, in the case of the rectangular area
of Fig. 6, the normal (z,)and tangential (¢;) components of the mean traction are

l /
<t,,> 2 ! m \/(12012)2 + (110'21)2, (74)

=——01+-——0pn and (f)=
T e ()
where /; and /, characterize the rectangular dimensions. The area shape can be selected to emphasize the
structural anisotropy of the granular assembly over which the average is calculated. For instance, Eq. (74)
becomes

” | o 2 1 2
<tn> _I——i—(xa” —l—m(}'zz and <l‘,> = \/(1—}——0(0]2) + (mfhl) (75)

after introducing the aspect ratio o = I,//;. In the limit of a very elongated area (i.e., o — 0), Eq. (75)
reduces to
<tn> — 0 and <t,> — |O'21|. (76)

This implies that for shear bands, which are typically elongated structures, the dominant stress quantities
are the shear and normal stresses acting on planes parallel to the bands. As shown in Fig. 6, when the
normal stresses Sj; and S», vary linearly on the rectangle sides, i.e.,

S =01+ Cx; and Sp =o0xn+ Cx, (77)

| ]

Fig. 6. Rectangular area for calculating the average stress.
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where C; and C, are constant coefficients, the following couple stresses are obtained (Vardoulakis and
Sulem, 1995):

M1 = %Cllg and Mz = %Czl’f (78)
Under these conditions, the moment equilibrium for the averaging area yields

1 M, M:

S21 —812:021 —612:2<am1+&m2), m :2—l; and WI2:2—ZT. (79)
For the very elongated area (i.e., « — 0), the asymmetry of stress becomes

my M2
— R2—=—. 80
021 — 012 oc A (80)

Eq. (80) implies that the couple stresses may result from the spatial variation of normal stresses acting on
the planes parallel to the longer side of elongated sampling areas, and that the amplitude of these couple
stresses scales with the smaller dimension of areas (e.g., ). In other words, the asymmetry of stress and the
existence of couple stresses may result from the averaging procedures, which accounts for elongated
structures like shear bands. The effects of averaging procedures on the asymmetry of average stress needs to
be investigated further through computer simulations of discrete particle assemblies.

8. Conclusion

We have derived the conditions for the asymmetry of stress in granular materials, and shown that there is
asymmetry even when the particle contacts do not transmit moments. This stress asymmetry is obtained
when the stress is defined from virtual work, but is lost when the stress is defined from statics. The
asymmetry results from external moments are applied by external forces. We also show that the amplitude
of stress asymmetry decreases with the ratio V'/S between surface S and volume V. When V' /S becomes very
large, the stress asymmetry disappears, with or without external contact moments.
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