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Abstract

Here, we show that the average stress in granular media, which is de®ned from virtual work, may be asymmetric in

the absence of contact moments. We specify the circumstances and amplitude of stress asymmetry, and calculate the

corresponding couple stress and ®rst stress moment. We also show that the average stress is always symmetric, when it

is alternately de®ned by using statics and no contact moment. The stress asymmetry, which results from external

moments, has an amplitude that decreases with the volume size. The present analysis applies to two- and three-

dimensional particles of arbitrary shapes. The asymmetric stress, couple stress and ®rst stress moment are analytically

calculated in a particular example with cylindrical and spherical particles. Ó 2000 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

The de®nition of stress in granular media is a controversial topic in mechanics. Some researchers
(Bogdanova-Bontcheva and Lippmann, 1975; Chang and Ma, 1991; Kanatani, 1979; M�uhlhaus and
Vardoulakis, 1987) claim that stress tensor is not symmetric in granular media, and that couple stresses are
important to understand material instability such as shear banding. Others (Christo�ersen et al., 1981;
Cundall and Strack, 1978±1979) a�rm that the stress asymmetry is absent or negligible for all practical
purposes, and unnecessarily complicates the description of the mechanical behavior of granular media.

The controversy about the asymmetry of stress and the existence of couple stress is not speci®c to
granular media. Couple stresses were proposed in metals and fracture mechanics to regularize the stress
intensity at crack tips (Sternberg, 1968), but there is not yet a convincing experimental evidence for couple
stress (Diepolder et al., 1991).

The objective of this article is to re-examine the de®nition of stress in granular materials, and to establish
the conditions under which there may be couple stresses and asymmetric stress. Following the introduction,
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Sections 2 and 3 review the basic equations of granular and equivalent continuous media. Section 3 re-
examines the de®nition of stress from virtual work and statics. Finally, Section 6 gives an example illus-
trating the stress asymmetry in granular media.

2. Granular medium

2.1. De®nition

As shown in Fig. 1, volume V is ®lled with N particles, some of which are subjected to external forces or
moments applied from the exterior of volume V. The particles are grouped in set B � f1; . . . ;Ng. The forces
and moment acting on the particles of B are concentrated at M points of set C � f1; . . . ;Mg. As shown in
Fig. 1, subset I represents the contact points between two particles of B, whereas the E denotes the points,
where external actions are applied:

I � f1; . . . ;MIg; E � fMI�1; . . . ;Mg and C � I [ E � f1; . . . ;Mg: �1�
Sets Ia, Ea, and Ca denote the contact points on particle a corresponding to internal actions, external

actions, and all actions, respectively. Sets Ca, Ia, Ea, I, E, and C are related as follows:

C �
[
a2B

Ca; Ca � Ia [ Ea; I �
[
a2B

Ia; and E �
[
a2B

Ea: �2�

The intersections of Ia and Ea for two di�erent particles are either empty or reduced to a single point c:

Ea \ Eb � ; and Ia \ Ib � fcg 8a 6� b 2 B: �3�
The particle assembly is in equilibrium when each particle is in equilibrium. The equilibrium of internal

and external forces acting on particle a isX
c2Ca

f ac
i � 0; i � 1; 2; 3; �4�

where f ac
i is the force at contact c. The equilibrium of moments about the center of particle a is

Fig. 1. Representation of a granular medium and its equivalent continuum.
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X
c2Ca

mac
i

�
� eijk�xc

j ÿ xa
j �f ac

k

�
� 0; i � 1; 2; 3; �5�

where mac
i represents the internal or external moments at contact point c, eijk is the permutation symbol

used for vector cross-product, and xa
j and xc

j are the coordinates of particle center a and contact point c,
respectively.

2.2. Virtual work in granular media

As shown in Fig. 1, the kinematics of granular media is represented by the displacement dua
i of the

particle centers, and the particle rotation dha
i . After multiplying Eqs. (4) and (5) by any virtual displacement

dua
i and rotation dha

i , and summing for all the particles of volume V, one obtains the following relation:X
a2B

X
c2Ca

f ac
i dua

i

�
� mac

i

�
� eijk�xc

j ÿ xa
j �f ac

k

�
dha

i

�
� 0: �6�

After transforming the double sum for Ca and B of Eq. (6) into two separate sums for I and E, and noting
that the contact forces and the moments are opposite at internal contact (i.e., f c

i � f ac
i � ÿf bc

i and
mc

i � mac
i � ÿmbc

i ), one obtains the principle of virtual work:

dW D
I � dW D

E � 0; �7�
where the work dW D

E done by external forces and moments and the work dW D
I done by internal forces and

moments are

dW D
I �

X
c2I

f c
i Dduc

i

ÿ � mc
i Ddhc

i

�
and dW D

E � ÿ
X
e2E

f e
i due

i

ÿ � me
i dhe

i

�
: �8�

As shown in Fig. 2, Dduc
i and Ddhc

i are the relative displacement and rotation of the two particles a and b
at their contact point c, respectively:

Fig. 2. Contact between two particles in a granular medium.
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Dduc
i � dub

i ÿ dua
i � eijk dhb

j �xc
k

�
ÿ xb

k� ÿ dha
j �xc

k ÿ xa
k�
�

and Ddhc
i � dhb

i ÿ dha
i ; �9�

where due
i and dhe

i are the displacement and rotation of the points e of application of external forces and
moments. The variational displacements and rotations dua

i and dha
i can be selected arbitrarily. In particular,

they can be chosen as follows:

dua
i � ai � bijxa

j � cijkxa
j xa

k and dha
i � ai � bijx

a
j i � 1; 2; 3; �10�

where ai, bij, cijk, ai, and bij are arbitrary coe�cients. By using Eq. (10), Dduc
i , Ddhc

i and due
i become

Dduc
i � bij�xb

j ÿ xa
j � � cijk�xb

j xb
k ÿ xa

j xa
k� ÿ ajeijk xb

k

ÿ ÿ xa
k

�� bjleijk xb
l xc

k

ÿÿ ÿ xb
k

�ÿ xa
l xc

k

ÿ ÿ xa
k

��
; �11�

Ddhc
i � bij�xb

j ÿ xa
j �; �12�

due
i � dua

i � eijkdha
j xe

k

ÿ ÿ xae
k

� � ai � bijxae
j � cijkxae

j xae
k � eijkaj xe

k

ÿ ÿ xae
k

�� eijkbjlx
ae
l xe

k

ÿ ÿ xae
k

�
; �13�

where xae corresponds to the center of particle a, where contact e takes place. By using Eqs. (11)±(13), dW D
I

and dW D
E become

dW D
I � bij

X
c2I

f c
i xb

j

�
ÿ xa

j

�
� cijk

X
c2I

f c
i xb

j xb
k

�
ÿ xa

j xa
k

�
ÿ aj

X
c2I

eijkf c
i xb

k

ÿ ÿ xa
k

�
� bjl

X
c2I

eijkf c
i xb

l �xc
k

ÿ�
ÿ xb

k� ÿ xa
l �xc

k ÿ xa
k�
�� mc

j�xb
l ÿ xa

l �
�
; �14�

dW D
E � ÿai

X
e2E

f e
i ÿ bij

X
e2E

f e
i xae

j ÿ cijk

X
e2E

f e
i xae

j xae
k ÿ aj

X
e2E

eijkf e
i �xe

k

�
ÿ xae

k � � me
j

�
ÿ bjl

X
e2E

eijkf e
i �xe

k

�
ÿ xae

k � � me
j

�
xae

l : �15�

As Eqs. (7), (14) and (15) hold for arbitrary values of ai, bij, cijk, ai and bij, the following relations are
obtained:X

e2E

f e
i � 0; i � 1; 2; 3; �16�

X
c2I

xb
i

ÿ ÿ xa
i

�
f c

j �
X
e2E

xae
i f e

j ; i; j � 1; 2; 3; �17�

X
c2I

eijk�xb
j ÿ xa

j �f c
k � ÿ

X
e2E

Mae
i ; i � 1; 2; 3; �18�

X
c2I

eiklf c
l xb

j �xc
k

��
ÿ xb

k� ÿ xa
j �xc

k ÿ xa
k�
�
� mc

i �xb
j ÿ xa

j �
�
�
X
e2E

Mae
i xae

j ; i; j � 1; 2; 3; �19�

X
c2I

f c
i �xb

j xb
k ÿ xa

j xa
k� �

X
e2E

f ae
i xae

j xae
k ; i; j; k � 1; 2; 3; �20�

where Mae
i is the external moment acting on particle a about the center of particle a:

Mae
i � eijk�xe

j ÿ xae
j �f e

k � me
i : �21�
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Eq. (16) translates the equilibrium of external forces applied to the whole assembly of particles. By using
Eqs. (17) and (18), one can derive the equilibrium of external moments about the coordinate origin for the
assembly of particles, i.e.,X

e2E

eimnxe
mf e

n

ÿ � me
i

� � 0: �22�

Therefore, Eq. (18) becomesX
c2I

eijk�xb
j ÿ xa

j �f c
k � ÿ

X
e2E

Mae
i �

X
e2E

eimnxae
m f e

n ; i � 1; 2; 3: �23�

For a volume V to be in equilibrium, the sum of external moments about a common point must vanish (i.e.,
Eq. (22)). However, it is emphasized that the sum of external moments about di�erent particle centers (i.e.,P

e2E Mae
i ) is not necessarily equal to zero. Mae

i results from not only contact moments me
i , but also contact

forces f e
i . It may be di�erent from zero even where there is no contact moment.

3. Continuum for granular media

In the continuum equivalent for granular media, the traction vector Ti and moment vector mi acting on
the unit surface of unit normal vector ni is related to the Cauchy stress tensor rij and the couple stress tensor
lij through

Ti � rjinj and mi � ljinj; i � 1; 2; 3: �24�
In the absence of external body force and moment per unit volume, the equations for equilibrium of

internal stress and couple stress are

rji;j � 0; i � 1; 2; 3; �25�

lji;j � eiklrkl � 0; i � 1; 2; 3: �26�
The kinematics of the equivalent continuum is de®ned by the ®elds of displacement vector dui and ro-

tation dhi, which describe the motion of particle centers, i.e.,

dui�xa
j � � dua

i and dhi�xa
j � � dha

i 8a 2 B: �27�
By multiplying Eqs. (25) and (26) by any variational ®elds dui and dhi, and integrating over volume V,

one obtains the following relation:Z
V

rji;j dui

ÿ � �lji;j � eiklrkl� dhi

� � 0: �28�

By invoking the Gauss theorem, the principle of virtual work is obtained:

dWI � dWE � 0; �29�
where the virtual work dWE of external forces and moments and the virtual work dWI of internal stresses
are

dWI �
Z

V
rji�dui;j

ÿ � eijk dhk� � lji dhi;j

�
dV and dWE � ÿ

Z
S

Ti dui� � mi dhi�dS: �30�

By choosing dui and dhi as speci®ed in Eq. (10), Eq. (30) becomes
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dWE � ÿai

Z
S

Ti dS ÿ bij

Z
S

Tixj dS ÿ cijk

Z
S

Tixjxk dS ÿ ai

Z
S

mi dS ÿ bij

Z
S

mixj dS; �31�

dWI � bij

Z
V

rji dV � cijk

Z
V
�rjixk � rkixj�dV ÿ aieijk

Z
V

rjk dV � bij

Z
V

lji

ÿ � eiklxjrlk

�
dV : �32�

As Eqs. (29), (31) and (32) hold for any values of ai, bij, cijk, ai, and bij, the following relations are
obtained:Z

S
Ti dS � 0; i � 1; 2; 3; �33�

Z
V

rij dV �
Z

S
xiTj dS; i; j � 1; 2; 3; �34�

eijk

Z
V

rjk dV � ÿ
Z

S
mi dS; i � 1; 2; 3; �35�

Z
V

lij

ÿ � ejklxirlk

�
dV �

Z
S

ximj dS; i; j � 1; 2; 3; �36�
Z

V
�rjixk � rkixj�dV �

Z
S

Tixjxk dS; i; j � 1; 2; 3: �37�

Eq. (33) implies the equilibrium of external forces. Eq. (34) represents the average stress �rij in volume
V:

�rij � 1

V

Z
V

rij dV � 1

V

Z
S

xiTj dS: �38�

Eq. (35) is useful to examine the symmetry of �rij:

eikj �rkj � ÿ 1

V

Z
S

mi dS; i � 1; 2; 3; �39�

where eikj �rkj � 0 when the stress tensor is symmetric (i.e., �rij � �rji). However,
R

S mi dS is not necessarily
equal to zero when there are moments at the external boundary. As previously mentioned, these external
moments in granular media may result from contact forces without contact moments. Finally, Eq. (36)
becomes

1

V

Z
V

lij

ÿ � ejklxirlk

�
dV � �lij � ejkl

�Rilk; �40�

where �Rijk is the average moment of stress:

�Rijk � 1

V

Z
V

xirjk dV : �41�

In summary, the internal work becomes

dWI � V bij �rji

�
� cijk��Rkji � �Rjki� ÿ aieijk �rjk � bij��lji � eikl

�Rjlk�
�
: �42�
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4. De®nition of average stresses in granular media

The average stresses in the equivalent continuum are de®ned by postulating that the granular and
continuous media produce identical internal and external works:

dW D
I � dWI and dW D

E � dWE: �43�

4.1. Average stress

As Eq. (43) applies to arbitrary values of bij, the average stress is

�rij � 1

V

X
c2I

�xb
i ÿ xa

i �f c
j �

1

V

X
e2E

xae
i f e

j : �44�

Eq. (44) is identical to those derived by Weber (1966), Goddard (1977), Christo�ersen et al. (1981), and
Rothenberg and Selvadurai (1981). In the case of spherical and cylindrical particles a and b, which are in
contact at point c with unit normal vector nc

i (i.e., xb
i ÿ xa

i � �Ra � Rb�nc
i ), due to the opposite sign of contact

forces and contact normals (i.e., f ca
i � ÿf cb

i and nca
i � ÿncb

i ), Eq. (44) becomes

�rij � 1

V

X
c2I

�Ra � Rb�nc
i f

c
j �

1

V

X
a2B

X
c2Ia

Ranca
i f ca

j : �45�

4.2. Symmetry of average stress

As Eq. (43) applies to arbitrary values of aj, one obtains

eijk �rjk � 1

V

X
c2I

eijk�xb
j ÿ xa

j �f c
k � ÿ

1

V

X
e2E

Mae
i �

1

V

X
e2E

eijkxae
j f e

k ; i � 1; 2; 3: �46�

Eq. (46), which can also be obtained directly from Eq. (44), is useful to determine the amplitude of stress
asymmetry. This amplitude can also be characterized by �rij ÿ �rji as follows:

�rij ÿ �rji � 1

V

X
e2E

xae
i f e

j

�
ÿ xae

j f e
i

�
� ÿ�eijk ÿ ejik� 1

V

X
e2E

Mae
k : �47�

Eq. (47) implies that the average stress may be asymmetric, even when there is no moment at contacts (i.e.,
me

i � 0�. The asymmetry results from the sum of the external moments that are created by external forces f e
i

about the particle centers.
The amplitude of stress asymmetry increases with the area S on which the external moments are applied,

but decreases with volume V. If the external moments are assumed to have bounded values, the amplitude
of stress asymmetry decreases with V =S. When V !1, the e�ects of external moments vanish, and the
average stress is symmetric. This applies with or without contact moments.

In the case of spherical and cylindrical particles, Eq. (47) becomes

�rij ÿ �rji � 1

V

X
a2B

X
c2Ia

Ra nac
i f ac

j

�
ÿ nac

j f ac
i

�
� 1

V

X
c2I

�Ra � Rb� nac
i f ac

j

�
ÿ nac

j f ac
i

�
: �48�

Eq. (48) shows that �rij is not necessarily symmetric when the particles are spheres or cylinders of identical
radius. This result, which is in disagreement with Caillerie (1991) and Chang and Liao (1990), will later be
veri®ed in a particular example.
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4.3. Average micropolar stress and ®rst moment of stress

As Eq. (43) applies to arbitrary values of bij and cijk, the following relations are obtained:

�lji � eikl
�Rjlk � 1

V

X
c2I

eiklf c
l xb

j �xc
k

��
ÿ xb

k� ÿ xa
j �xc

k ÿ xa
k�
�
� mc

i �xb
j ÿ xa

j �
�

� 1

V

X
e2E

Mae
i xae

j ; i; j � 1; 2; 3; �49�

�Rkji � �Rjki � 1

V

X
c2I

f c
i �xb

j xb
k ÿ xa

j xa
k� �

1

V

X
e2E

f ae
i xae

j xae
k ; i; j; k � 1; 2; 3: �50�

Therefore, the external moments Mae
i , which result from external contact force f e

i and/or contact mo-
ment me

i , generate not only asymmetric stress, but also couple stress and ®rst stress moment. This result is in
agreement with Eq. (26), which states that couple stresses are required to balance asymmetric stresses.
However, the present approach provides only the sums �lji � eikl

�Rjlk and �Rkji � �Rjki, and unfortunately not
each term �lji and �Rjlk.

5. Alternate de®nition of average stress

The average stress can also be de®ned based on statics, instead of virtual work (Cundall and Strack,
1978±1979). The average stress within volume V is de®ned as the weighted average of the stress �ra

ij for each
particle a of B:

�r�ij �
1

V

X
a2B

�ra
ijVa; �51�

where Va is the volume of particle a, and

�ra
ij �

1

Va

Z
Va

rij dV : �52�

By using Eq. (34), and replacing the traction vector Ti with discrete contact force f c
i , �ra

ij becomes

�ra
ij �

1

Va

Z
Sa

xiTj dS � 1

Va

X
c2Ca

xc
i f

c
j : �53�

Because the contact forces are opposite at internal contacts (i. e., f ca
j � ÿf cb

j ), the average stress �r�ij is

�r�ij �
1

V

X
a2B

X
c2Ca

xc
i f

c
j �

1

V

X
c2I

xc
i � f ca

j � f cb
j � �

1

V

X
e2E

xe
i f

e
j �

1

V

X
e2E

xe
i f

e
j : �54�

Note that xe
i in Eq. (54) refers to contact point e, whereas xae

i in Eq. (44) refers to the center of the particle a,
where contact e takes place. �r�ij and �rij are related through

�r�ij � �rij � 1

V

X
e2E

xe
i

ÿ ÿ xae
i

�
f e

j : �55�

The symmetry of �ra
ij results from the equilibrium of moments about the coordinate origins for particle a,

i.e.,
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eijk �ra
jk �

1

Va

X
c2Ca

eijkxc
jf

c
k � 0; i � 1; 2; 3: �56�

The stress �r�ij is therefore symmetric, because it is the weighted sum of symmetric �ra
ij. The symmetry of �r�ij

can also be shown by using Eq. (54) and invoking the equilibrium of external moments about the coor-
dinate origin (i.e., Eq. (22)).

The symmetry of �r�ij has signi®cant implications in computational granular mechanics, especially for the
computer simulations using dynamic relaxation to solve the equilibrium equations of statics (Cundall and
Strack, 1978±1979; Bardet and Proubet, 1991). When there is no moment at contacts, �r�ij should be sym-
metric, and any computed asymmetry of �r�ij should be interpreted as inaccurate calculation and/or lack of
static equilibrium.

In the case of spherical and cylindrical particles of radius Ra, xc
i � xa

i � Ranc
i , the average stress �r�ij be-

comes

�r�ij �
1

V

X
a2B

1

Va

X
c2Ca

�xa
i � Ranc

i �f c
j �

1

V

X
a2B

Ra

Va

X
c2Ca

nc
i f

c
j �

1

V

X
a2B

Ra

X
c2Ca

nc
i f

c
j : �57�

Eq. (57) is the same as that obtained by Cundall and Strack (1979).

6. Examples

We will illustrate the circumstances of stress asymmetry in the case of double and multiple layer in-
terfaces ®lled with cylindrical or spherical particles.

6.1. Double layer interface

The stresses �rij and �r�ij can be calculated analytically for the particular example of Fig. 3, which rep-
resents an interface made of p columns each having two particles. The columns have the same height, but
are made of particles of various diameters. The particle assembly is subjected to the normal force Np and
shear force Sp, which are assumed to be distributed evenly onto each particle column; the normal and shear
forces acting at all contacts are N � Np=p and S � Sp=p, respectively. The contact direction between two
particles is identical for all particles in contact. It is characterized by the unit vector n of component

Fig. 3. Double-layer interface model for the calculation of average stress.
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n1 � sinh and n2 � cosh. The equilibrium of forces and moments for all particles and the top plate are
satis®ed when

S � Nn1= 1� � n2� � N tan h=2� �: �58�
All the contact forces have the same inclination h=2 relative to the contact direction n. The contacts do not
slip and the interface remains stable as long as h remains smaller than 2/, where / is the friction angle
between two particles. For the calculation of �rij, it is convenient to select the coordinate axis at the center of
particle 2. In this coordinate system, the center coordinates of particle 1 are

x1e
1 � n1L and x1e

2 � n2L; �59�
where L � R1 � R2. By using Eqs. (44) and (59), the stresses �rij are

�r11 � ÿn1S=A; �r22 � ÿ 1� n2� �n2

n1

S=A; �r12 � ÿ 1� � n2�S=A; and �r21 � ÿn2S=A; �60�

where A � V =L, and V is the average volume of particle columns. For interfaces ®lled with cylindrical or
spherical particles, V can be evaluated as follows:

V � 1� � n2�LW1W2; �61�
where W1 is the average width of particle columns in the x1 direction. For cylindrical particles, W2 is the
particle length. For spherical particles, W2 is the average width of particle columns in the x2 direction. Both
W1 and W2 depend on the density of particles in the interface.

The external moments Mae
i acting on particles 1 and 2 are

M1
3 � R1S and M2

3 � R2S: �62�
By using Eq. (47) or Eq. (60), the amplitude of stress asymmetry is

�r12 ÿ �r21 � ÿM1
3 �M2

3

V
� ÿS=A: �63�

The stress asymmetry vanishes when S � 0, i.e., when the particle columns are vertical. As previously stated
in Eq. (48), �rij is not necessarily symmetric for particles of identical radius (e.g., R1 � R2). The couple stress
and ®rst stress moment is

�l13 � �R121 ÿ �R112 � R1n1S=A and �l23 � �R221 ÿ �R212 � R1n2S=A: �64�
For the calculation of �r�ij, it is convenient to select the coordinate axis at the lowest external contact. The

coordinates of the highest contact are therefore

xe
1 � n1L and xe

2 � �1� n2�L; �65�
and the stress �r�ij is

�r�11 � ÿn1S=A; �r�22 � ÿ
1� n2� �2

n1

S=A; and �r�12 � �r�21 � ÿ 1� � n2�S=A: �66�

As expected, �r�ij is symmetric. �r�ij and �rij are related through

�r�11 � �r11; �r�22 � �r22 ÿ 1� n2� �
n1

S=A; �r�12 � �r21; and �r�21 � �r21 ÿ S=A: �67�

Fig. 4 compares the normalized variation of �r�ij and �rij when the angle h � tanÿ1�n1=n2� varies from 0° to
90°. The stress asymmetry (i.e., �r12 ÿ �r21) remains constant and independent from h.
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6.2. Multi-layer interface

As shown in Fig. 5, the multi-layer interface model is made of p columns of particles, each column i
having qi particles (qi must be an even number). This multi-layer model is a generalization of the two-layer
model, which corresponds to qi � 2 for i � 1; . . . ; p. The particle columns have the same height and contact
direction n, but may have di�erent numbers qi of particles. All the particles and the top platen are in static
equilibrium, when Eq. (58) is satis®ed; the contact forces are identical to those of the two-layer model. The

Fig. 5. Multi-layer interface model for the calculation of average stress.

Fig. 4. Variation of normalized stresses of �rijA=S and �r�ijA=S with angle h.
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average stresses in the interface can be determined by averaging the average stresses in each column.
Hereafter, we will calculate only the average stresses in a column.

After selecting the coordinate axis at the center of particle qi, the center coordinates of particle 1 are

x1 � n1L and x2 � �1� n2�Lÿ �R1 � Rqi�; �68�
where L �Pqi

j�1 Rj. The average stresses �rij in column i are

�r11 � ÿn1S=A; �r22 � ÿ 1� n2� �2
n1

S=A� R1 � Rqi

V
1� n2

n1

S; �r12 � ÿ 1� � n2�S=A; and

�r21 � ÿ 1� � n2�S=A� R1 � Rqi

V
S; �69�

where A and V are de®ned as for the double layer interface. The values of �r11 and �r12 are identical to those
in Eq. (60), whereas the corresponding values of �r22 and �r21 are di�erent. The di�erences, however, vanish
when V !1. The stresses �r�ij in the multi-layer are identical to those of the double layer interface (i.e., Eq.
(66)). As predicted by Eq. (69), �rij converges toward �r�ij when volume V becomes large (i.e., q!1). The
external moments Mae

i acting on particle 1 and qi are

M1
3 � R1S and Mqi

3 � Rqi S: �70�
These external moments are responsible for the stress asymmetry as follows:

�r12 ÿ �r21 � ÿS�R1 � Rqi�=V : �71�
The amplitude of stress asymmetry decreases with the number of particles in the columns, and increases
with the size of particles at the top and bottom of columns. The stress becomes symmetric when the column
height becomes in®nite (i.e., q!1). The couple stress and ®rst stress moment are

�l13 � �R121 ÿ �R112 � R1n1S=A;

�l23 � �R221 ÿ �R212 � R1�1� n2�S=Aÿ R1�R1 � Rqi�S=V :
�72�

In contrast to the asymmetric stress components, �lij � eikl
�Rjlk does not decrease when volume V becomes

large (i.e., q!1).

7. Discussion

The asymmetry of stress depends on the way stresses are de®ned. The stresses de®ned by statics are
symmetric when there is no contact moment. However, the stresses de®ned by virtual work may become
asymmetric when there is no contact moment. Our analysis di�ers from the previous ones (Christo�ersen
et al., 1981; Chang and Liao, 1990), because we considered external moments, and established the circum-
stances and amplitude of stress asymmetry. In agreement with Caillerie (1991), we found that the asym-
metry originates from external moments, and that the amplitude of stress asymmetry decreases with the size
of the granular volume. The stress asymmetry is, therefore, more detectable in elongated samples subjected
to external moments on their boundary. Bulky samples subjected to small external moments are likely to
display negligible stress asymmetry. The stress asymmetry can rightfully be neglected in large masses of
granular media far away from the boundaries with external moments. However, it may become important
in interfaces with signi®cant external moments. There is a need for verifying these ®ndings through com-
puter simulations and laboratory experiments.
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7.1. Remark on volume averaging

The areas for calculating average stresses can be selected in various ways. In two dimensions, these areas
are usually chosen to be circular. In this case, the mean normal traction htni becomes equal to the trace of
the stress tensor rij (Vardoulakis and Sulem, 1995), i.e.,

htni � 1

S

Z Z
tini dS � 1

S

Z Z
rijninj dS � rkk; �73�

where S is the circle perimeter, and ni the unit normal to S. As pointed out by Novozhilov (1961), the value
of htni strongly depends on the shape of the averaging area. For example, in the case of the rectangular area
of Fig. 6, the normal htniand tangential htii components of the mean traction are

htni � l2

l1 � l2

r11 � l1

l1 � l2

r22 and htti � 1

l1 � l2

�������������������������������������
l2r12� �2 � l1r21� �2

q
; �74�

where l1 and l2 characterize the rectangular dimensions. The area shape can be selected to emphasize the
structural anisotropy of the granular assembly over which the average is calculated. For instance, Eq. (74)
becomes

htni � a
1� a

r11 � 1

1� a
r22 and htti �

������������������������������������������������������������
a

1� a
r12

� �2

� 1

1� a
r21

� �2
s

�75�

after introducing the aspect ratio a � l2=l1. In the limit of a very elongated area (i.e., a! 0), Eq. (75)
reduces to

htni ! r22 and htti ! r21j j: �76�
This implies that for shear bands, which are typically elongated structures, the dominant stress quantities

are the shear and normal stresses acting on planes parallel to the bands. As shown in Fig. 6, when the
normal stresses S11 and S22 vary linearly on the rectangle sides, i.e.,

S11 � r11 � C1x2 and S22 � r22 � C2x1; �77�

Fig. 6. Rectangular area for calculating the average stress.
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where C1 and C2 are constant coe�cients, the following couple stresses are obtained (Vardoulakis and
Sulem, 1995):

M1 � 2
3
C1l3

2 and M2 � 2
3
C2l3

1: �78�
Under these conditions, the moment equilibrium for the averaging area yields

S21 ÿ S12 � r21 ÿ r12 � 2 am1

�
� 1

a
m2

�
; m1 � M1

2l2

and m2 � M2

2l1

: �79�

For the very elongated area (i.e., a! 0), the asymmetry of stress becomes

r21 ÿ r12 � 2
m2

a
� M2

l2

: �80�

Eq. (80) implies that the couple stresses may result from the spatial variation of normal stresses acting on
the planes parallel to the longer side of elongated sampling areas, and that the amplitude of these couple
stresses scales with the smaller dimension of areas (e.g., l2). In other words, the asymmetry of stress and the
existence of couple stresses may result from the averaging procedures, which accounts for elongated
structures like shear bands. The e�ects of averaging procedures on the asymmetry of average stress needs to
be investigated further through computer simulations of discrete particle assemblies.

8. Conclusion

We have derived the conditions for the asymmetry of stress in granular materials, and shown that there is
asymmetry even when the particle contacts do not transmit moments. This stress asymmetry is obtained
when the stress is de®ned from virtual work, but is lost when the stress is de®ned from statics. The
asymmetry results from external moments are applied by external forces. We also show that the amplitude
of stress asymmetry decreases with the ratio V =S between surface S and volume V. When V =S becomes very
large, the stress asymmetry disappears, with or without external contact moments.
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